

Computer Model for Manipulation of a Multibody System

Using MATLAB

by Benjamin J. Flanders

ARL-TR-6594 September 2013

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-6594 September 2013

Computer Model for Manipulation of a Multibody System
Using MATLAB

Benjamin J. Flanders

Weapons and Materials Research Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

September 2013
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

March 2013
4. TITLE AND SUBTITLE

Computer Model for Manipulation of a Multibody System Using MATLAB
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Benjamin J. Flanders
5d. PROJECT NUMBER

AH80
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: RDRL-WML-A
Aberdeen Proving Ground, MD 21005-5066

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-6594

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report discusses a program that was written in order to support the FragFly model. The program assists users of the
FragFly model in visualizing and posing a human target composed of moveable parts. The report discusses the architectural
design of the posing program and identifies the specific format for constructing input files. The report also provides a user’s
guide for a graphical user interface that was created.

15. SUBJECT TERMS

body, simulation, multibody, pose, vertices, faces

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

34

19a. NAME OF RESPONSIBLE PERSON
Benjamin J. Flanders

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)
410-278-4257

 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

List of Tables iv

1. Background 1

2. Introduction to the Multibody System 2

3. Input Files 3

3.1 Declarative Data ..4

3.2 Relational Data ..9

4. GUI User Guide 12

4.1 START ..12

4.2 POSE ...13

4.3 COMMIT...14

5. Fundamentals of Rotations, Posing, and Postures 15

5.1 Rotate a Point About the Origin ..15

5.2 Rotate a Point About Another Point Given a Rotation Matrix......................................16

5.3 Rotate a Joint’s Rotation Matrix ...17
5.3.1 Posing Algorithm ..17
5.3.2 Transforming a Body Into a Posture ...18
5.3.3 Reverse Posture Algorithm ...19

6. Conclusions 20

Appendix A. “pose_body.m” 21

Appendix B. “TRT.m” 25

Distribution List 27

 iv

List of Figures

Figure 1. Multibody system framework...3

Figure 2. File description for the Vertex Matrix file (“verts.txt”). ..5

Figure 3. File description for the Joint Location Matrix (“joint.txt”). ...5

Figure 4. File description of the Translation Matrix (“translation.txt”). ...6

Figure 5. File description of the Rotation Matrix (“rotations.txt”). ...7

Figure 6. Human body example. Subcomponents and joints are labeled.8

Figure 7. File description of Face Matrix (“faces.txt”). ...10

Figure 8. Joint tree with component leaves. ..10

Figure 9. Startup window for GUI. ..13

Figure 10. Steps to pose an object. ..14

Figure 11. Simple rotation of a point about the origin. ..16

List of Tables

Table 1. Description of subcomponents and joints by ID. ...9

Table 2. Joint Tree Relation Matrix. ..11

 1

1. Background

This report discusses a program that was written in order to support the FragFly model. The
FragFly model was created to assess incapacitation of human targets given a detonation of a
fragmenting munition. The model creates fragments using a ZDATA file (see “Proposed Model
for Fragmentation using ZDATA Files”);1 the fragments are flown out to the surface of the
target, and the model Operational Requirements-based Casualty Assessment (ORCA) is used to
determine if an incapacitation has occurred. This is done by supplying the ORCA program
interface an entry and exit location of each fragment through the body parts. ORCA assumes that
the body and all its parts have a particular location and orientation. However, one of the
objectives of the FragFly model was to allow the target to be posed into any posture. As a
compromise, rigid-body rotations of body parts about joints are allowed to achieve intended
postures. Rigid-body rotations by definition have inverse rotations. Therefore, regardless of the
posture of the body, entry, and exit points of a fragment through the parts of a postured body can
be translated back into the ORCA reference frame. This overcomes the potential limitations of
using ORCA to determine incapacitation.

To do this a multibody system2 was needed to properly represent the body with moveable parts
such as arms and legs that can be rotated around joints like shoulders and knees. A multibody
system is defined as an assembly of two or more rigid bodies imperfectly joined together, having
the possibility of relative movement between them. Such a system was created; however, it lacks
any kinematic behavior traditionally associated with multibody systems. A graphical user
interface (GUI) tool was created to provide users a visualization of a body and provide real-time
feedback for posing the body parts.

This report is broken down into five main sections.

1. Section 2. Introduction to the Multibody System.

2. Section 3. Input Files. This section introduces the readers to the definitions of the system
and how the system is represented in data files.

3. Section 4. GUI User Guide. This section explains how to use the GUI created to pose the
body.

4. Section 5. Fundamentals of Rotations, Posing, and Postures. This section explains the
technical and mathematical details of the GUI and informs the reader how the FragFly
model uses the output files of the GUI.

1 Flanders, B. J. Proposed Model for Finding Initial Conditions of Fragments from a Detonated Munition Using a ZDATA

File; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, to be published, 2013.
2http://mat21.etsii.upm.es/mbs/bookPDFs/Chapter01.pdf (accessed May, 2013).

 2

5. Section 6. Conclusions. At this section the reader should be able to:

• Recognize and create the GUI input files.

• Launch (or start) the GUI.

• Know how to use the interface in order to manipulate the moveable parts of the target.

• Recognize and understand the output files of the posing program and how they will be
used in the FragFly model.

• Understand the mathematical expression used to perform the manipulations.

2. Introduction to the Multibody System

There is quite an extensive body of work related to multibody systems, which has application in
the gaming industry, computer simulations, and robotics to name a few domains. A rather simple
system was created to capture core functionality that is needed for the FragFly model. There are
four major tasks of the system (which are implemented in the GUI).

1. Read input files.

2. Visualize the body.

3. Manipulate the moveable parts of the body (called posing) with real-time feedback.

4. Allow user to “commit” a posture by writing the output files.

These tasks can be seen in figure 1 as they are implemented in the GUI.

 3

Figure 1. Multibody system framework.

The input files are shown on the left. These files are read in by the GUI program and stored into
local memory. It also creates two more data structures called the Translation and Rotation
matrices. They begin within local memory and are the only pieces of data that are changed
throughout the lifetime of the GUI. The GUI provides the user a visualization of the body
(“Visualize”) and user interface buttons to rotate the parts of the body about the joints
(“Manipulate Body”). Notice the double arrow between the functions. This means that as the
body is being manipulated, the visualization of the body is updated along with the Translation
and Rotation matrices. The process ends with the user electing to “commit” a posture (i.e., the
visual orientation of the parts of the body), which causes the GUI program to write out the
Translation and Rotation matrices. These output files, along with the Vertex, Face, and Joint
Location matrices become inputs for the FragFly model. Note that at no point does the GUI
program change the Vertex, Face, or Joint Location matrices.

3. Input Files

Collectively the input files, and the data they contain, represent the user’s full understanding of
the body within the system. It is expected that many users will not have all the files needed prior
to reading this report. However, by the end of this section, the reader should be able to recognize
how to create any missing input files.

 4

The data in the system can be categorized into two types: declarative and relational. Declarative
data represents values that can be measured or quantified. One example of this is a location or
“point” in Euclidean space. Relational data represent mathematical functions or relations, which
cannot be replicated using standard mathematical functions.

Below is a complete list of the input files separated by their type.

1. Declarative

a. Vertex Matrix

b. Joint Location Matrix

c. Translation Matrix

d. Rotation Matrix

2. Relational

a. Face Matrix

b. Joint Tree Relation

c. Component-joint function

Each of the files will now be discussed.

3.1 Declarative Data

Following is a list of the input files that contain nonrelational data. A brief description of the file
is given, along with suggested file names in parentheses. These names will also be used later
when displaying code snippets. In general, files should not contain any headers or text (except
for delimiters), are required to be comma separated, and use “newline” characters to separate
rows of information.

1. Vertex Matrix (“vertices.txt”)—lists the points that lay on the surface of each
subcomponent. It is assumed that all the vertices of the body are stored in one file, called
the vertex file. For a body comprised of a total of n vertices, the file will have n lines and
have (at least) four comma-separated columns. Additional columns will be ignored. The
first three columns of a row are the x, y, z coordinates of a vertex, respectively, and the
fourth column is the identification number (ID) of the component (a more general term for
body part) the vertex belongs to. Figure 2 shows a snippet of a vertices file with the
columns labeled.

 5

Figure 2. File description for the Vertex Matrix file (“verts.txt”).

2. Joint Locations Matrix (“joints.txt”)—lists the location of each joint. For a body with j
joints, the joint location file will have j rows and three columns. The three columns are the
x, y, z coordinates of each joint, respectively. Figure 3 shows a snippet of a joint location
file with the columns labeled. The order that the joints are listed is important because it
imposes on each joint an ID number. The ID numbers will be referenced in the relational
data.

Figure 3. File description for the Joint Location Matrix (“joint.txt”).

3. Translation Matrix (“translations.txt”)—lists all the global translation for each joint.
Essentially, each joint is assigned a translation vector, which initially has all zero entries.
As the joint is relocated, the translation vector for the joint is updated to reflect the change
in location from the original location. All the translation vectors are collected into one
matrix. For a body with j joints, the translation matrix will have j rows. The ith row of the
translation matrix will correspond to the ith joint in the Joint Location Matrix. The

 6

Translation Matrix is first created in the local memory of the GUI program and is written
out when the user “commits” a posture. Again, for a body with j joints, the file will consist
of j rows and three columns. The three columns represent the x, y, z components of each
translation, respectively. Figure 4 shows a snippet of the Translation Matrix as it would
appear if it were written out at initialization.

Figure 4. File description of the Translation Matrix (“translation.txt”).

4. Rotation Matrix (“rotations.txt”)—lists the coordinate system matrix for each joint. This
matrix is first created in the local memory of the GUI program and is written out when the
user “commits” a posture. Initially each joint is assigned the three-dimensional identity
matrix as its rotation matrix. In order to store all the matrices for all the joints together,
each matrix is “vectorized.” Vectorizing is a process of reshaping a two-dimensional
matrix into one dimension. A vectorized matrix is one that lists all the elements of the
matrix along one row such as:

 �
1 2 3
4 5 6
7 8 9

� → [1 2 3 4 5 6 7 8 9]. (1)

Figure 5 shows a snippet of what the Rotation Matrix file would look like if it were written out
during initialization.

 7

Figure 5. File description of the Rotation Matrix (“rotations.txt”).

To provide a visualization of some of the declarative data, figure 6 shows the human body used
in the FragFly model (see “An Alternative Representation of a Simulated Human Body”).3 Each
component and joint is labeled and table 1 provides a description for each.

3 Flanders, B. J. An Alternative Representation of a Simulated Human Body; U.S. Army Research Laboratory: Aberdeen Proving
Ground, MD, to be published, 2013.

 8

Figure 6. Human body example. Subcomponents and joints are labeled.

 9

Table 1. Description of subcomponents and joints by ID.

Component Joint
ID Description ID Description

1 Lower head 1 Neck
2 Thorax 2 Pelvic
3 Abdomen 3 Right shoulder
4 Pelvis 4 Left shoulder
5 Upper right arm 5 Right elbow
6 Lower right arm 6 Left elbow
7 Upper left arm 7 Left hip
8 Lower left arm 8 Right hip
9 Upper right leg 9 Left knee

10 Lower right leg 10 Right knee
11 Upper left leg 11 Left ankle
12 Lower left leg 12 Right ankle
13 Right foot 13 Thoracic vertebra 2
14 Left foot 14 Thoracic vertebra 10
15 Neck — —
16 Upper head — —

3.2 Relational Data

Following is a list of the input files that contain relational data.

1. Face Matrix (“faces.txt”)—used to connect vertices together to form surfaces of the target.
For a body with a total of k faces, the face file has k rows and (at least) four columns. The
first three columns of a row in the face matrix identify the three vertices that form a
triangle surface by their row number in the Vertex Matrix. The fourth column represents
the component identification number that denotes assignment. For instance, if a row in the
face file reads [1, 17, 28, 5], then this face is formed by connecting the first, seventeenth,
and twenty-eighth vertices found in the Vertex Matrix into one triangle. This face belongs
to the component with the ID of 5. Figure 7 shows a template of the face file.

2. Joint Tree Relation (“joint_tree.txt”)—this file represents the relationship that the joints
share with each other. This relationship is best described as an ordered tree relationship.
Note that a body may contain any number of root nodes as illustrated in figure 6, which
shows the joint tree for a body model in figure 8.

 10

Figure 7. File description of Face Matrix (“faces.txt”).

Figure 8. Joint tree with component leaves.

 11

There are many ways to represent this structure conceptually. One is to define a relation so that

 𝐽𝑡𝑟𝑒𝑒(𝑖, 𝑗) = �1
0

� if joint j is a child of joint i
otherwise

 . (2)

To be more explicit, one can say that 𝐽𝑡𝑟𝑒𝑒(𝑖, 𝑗) is true if and only if the joint that is located in the
jth row in the “joints.txt” matrix is a child of the joint that is located in the ith row of the same
matrix. This relation can be expressed by forming, for a body with j joints, a square matrix that
has j rows and columns. The entry of the ith row and jth column will be the value of 𝐽𝑡𝑟𝑒𝑒(𝑖, 𝑗).
Table 2 shows the entire file. Just like all other files, the values are comma separated and rows
are separated by a newline character.

Table 2. Joint Tree Relation Matrix.

 Joint

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Joint

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

2 1 1 1 1 1 1 0 0 0 0 0 0 1 1

3 0 0 1 0 1 0 0 0 0 0 0 0 0 0

4 0 0 0 1 0 1 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 1 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 1 0 1 0 1 0 0 0

8 0 0 0 0 0 0 0 1 0 1 0 1 0 0

9 0 0 0 0 0 0 0 0 1 0 1 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 1 0 0

11 0 0 0 0 0 0 0 0 0 0 1 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0

13 1 0 1 1 1 1 0 0 0 0 0 0 1 0

14 1 0 1 1 1 1 0 0 0 0 0 0 1 1

3. Component-joint function (“comp_function.txt”)—notice that in figure 8 the components
described in table 1 appear attached to a joint. Continuing the tree analogy, the
subcomponents can be thought of as the leaves on the joint tree. Leaves can only belong to
one branch, and in the same way, a subcomponent can only be attached to one joint. Thus
one can define a function 𝐶𝑗𝑜𝑖𝑛𝑡(𝑐) that maps the set of subcomponents 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 →
𝐽𝑜𝑖𝑛𝑡𝑠 so that

 𝐶𝑗𝑜𝑖𝑛𝑡(𝑐) = 𝑗 (3)

if and only if the subcomponent s is attached to joint j. It is left as an exercise to the reader to
form the component joint function for the tree in figure 8.

 12

4. GUI User Guide

Once the user has correctly created all the input files, he is then ready to use the GUI. The GUI
program was written in MATLAB.* The language was chosen because of its three dimensionally
graphing and viewing capabilities. The GUI program is a collection of data files and MATLAB
scripts. All the files and scripts should be collocated in one file directory for convenience (this
avoids the user from being required to specify file paths). The MATLAB current directory
should be set to the file directory containing all the files.

There are three actions that a user can perform:

1. START: this will launch the GUI.

2. POSE: control mechanisms allow the user to pose the object.

3. COMMIT: after posing is complete, the user can write out the posture files.

Each action will now be discussed in detail.

4.1 START

Assuming that the files in the previous section are named accordingly, then in the “Command
Window” type:
>> pose_body('verts.txt', 'faces.txt', 'joints.txt', 'joint_tree.txt',
'comp_function.txt')

The order of files is important. The file names should be in the following order: Vertex Matrix,
Face Matrix, Joint Location Matrix, Joint Tree Relation, and Component-Joint Function.

This will execute the function called “pose_body,” which will produce the window as seen in
figure 9.

The user may prefer to maximize the window, which will make the layout of the window less
cluttered.

* MATLAB is a registered trademark of The MathWorks, Inc.

 13

Figure 9. Startup window for GUI.

4.2 POSE

To pose the body, follow the steps in figure 10.

1. Select a joint from the drop-down menu labeled “Joint.” The selected joint will appear as a
red dot. The axis of rotation will be redrawn on the joint selected and all components that
will be affected by the joint rotation appear as more solid than the unaffected components.

2. Select an axis of rotation from the drop-down menu labeled “AXOR.” The selected axis
will appear in bold. The three axes of rotation for a joint will rotate along with the joint.
The axis of rotation is actually taken from the coordinate system matrices.

3. Modify the angle of rotation by using the slider labeled “Angle.”

 14

Figure 10. Steps to pose an object.

By default the MATLAB camera toolbar is opened. This allows the user to manipulate the view
of the target to a desired point of view. Camera actions do not pose the object or affect the
posture.

4.3 COMMIT

After the body is in a desired posture, the user can “commit” the posture by pressing the
“Commit” button. As mentioned before, pressing this button will write out the Translation and
Rotation matrices into files. Before the files are written out an adjustment is made to the
translation vectors. The adjustment is to ensure that the lowest point on the body (the vertex with
the least z component value) is incident with the x-y plane. The user will be prompted to provide
file names for each posture file. Default values are given. These files are ready to be used in the
FragFly model.

 15

5. Fundamentals of Rotations, Posing, and Postures

Rotating a body part about a joint (called a joint rotation) is a multistep process. In a joint
rotation one must be able determine which components and joints will be affected. For instance a
shoulder rotation will rotate the entire arm as well as the elbow joint. If a joint is rotated, its
translation vector and rotation matrix must be updated in the Translation and Rotation matrices,
respectively. Before the joint rotation algorithm is discussed, three key concepts will be
presented:

1. Rotate a point about the origin

2. Rotating a point about another point given a rotation matrix

3. Rotate a joint’s rotation matrix.

These concepts will help support three main algorithms:

4. Posing Algorithm

5. Posture Algorithm

6. Reverse-Posture Algorithm.

5.1 Rotate a Point About the Origin

The simplest rotation is one about the origin. Rotations about the origin are defined by an axis of
rotation (required to be a unit vector), call it u�⃗ , and an angle of rotation, call it θ. The vector u�⃗
and angle θ can be used to form a matrix R,

𝑅 = 𝑓(𝑢, 𝜃) = �
cos 𝜃 + 𝑢𝑥

2 ∙ 𝑑 𝑢𝑥 ∙ 𝑢𝑦 ∙ 𝑑 − 𝑢𝑧 ∙ sin 𝜃 𝑢𝑥 ∙ 𝑢𝑧 ∙ 𝑑 + 𝑢𝑦 ∙ sin 𝜃
𝑢𝑥 ∙ 𝑢𝑦 ∙ 𝑑 + 𝑢𝑧 ∙ sin 𝜃 cos 𝜃 + 𝑢𝑦

2 ∙ 𝑑 𝑢𝑦 ∙ 𝑢𝑧 ∙ 𝑑 − 𝑢𝑥 ∙ sin 𝜃
𝑢𝑥 ∙ 𝑢𝑧 ∙ 𝑑 − 𝑢𝑦 ∙ sin 𝜃 𝑢𝑦 ∙ 𝑢𝑧 ∙ 𝑑 + 𝑢𝑥 ∙ sin 𝜃 cos 𝜃 + 𝑢𝑧

2 ∙ 𝑑
� (4)

where (ux, uy, uz) = 𝑢�⃗ and d is (1 – cos θ). The matrix R is matrix for of the Rodriguez rotation
formula.4 It can be used to rotate a point, v, such that the rotated point, v′, is

 𝑣′ = 𝑅𝑣. (5)

This is represented in figure 11, where θ is assumed to be positive.

4Mason, M. T. Mechanics of Robotic Manipulation, Massachusetts Institute of Technology: The MIT Press, Cambridge, MA;

Chapter 3, figure 3.26, 2001; 46.

 16

Figure 11. Simple rotation of a point about the origin.

Of course, the rotation of a point can also be expressed as a translation, call it t. Thus, if

 𝑡 = 𝑅𝑣 − 𝑣, (6)

then v′ can be defined as

 𝑣′ = 𝑣 + 𝑡. (7)

5.2 Rotate a Point About Another Point Given a Rotation Matrix

Assume that one wanted to rotate about a point p instead of the origin. This requires two
translations. The point v is translated first by p, effectively making p the origin. That point is
rotated according to rotation matrix R. Finally, the rotated point is placed back into the original
reference frame (a second translation of p). Thus t is defined as

 𝑡 = 𝑅(𝑣 − 𝑝) + 𝑝 − 𝑣. (8)

This translation can then be applied to v as in equation 7.

Recall from section 3.1 Declarative Data, that the each joint is assigned a global translation
vector. It begins with all zero entries. Every time t in equation 8 is calculated for a joint, we add
it to its global translation vector. Thus, one can say that for n poses that affect joint j, then

 𝑇𝑗 = ∑ 𝑡𝑖,𝑗
𝑛
𝑖=1 , (9)

where 𝑇𝑗 is the global translation vector for joint j.

 17

5.3 Rotate a Joint’s Rotation Matrix

When a joint is rotated about another joint, its location may change. Regardless though, its
rotation matrix will change. As discussed in section 3.1, number 2., each joint is assigned a
rotation matrix. Assume that its rotation matrix is A. Then A is updated (symbolized by “→”)
such that

 𝐴 → 𝑅𝐴 (10)

for a rotation matrix R, defined in section 4.1.

Similar to equation 9, after a sequence n poses (that affect joint j), the rotation matrix for joint j
(represented as 𝐴𝑗) will be

 𝐴𝑗 → ∏ 𝑅𝑖,𝑗
𝑛
𝑖=1 . (11)

5.3.1 Posing Algorithm

We are ready to define a joint rotation (or posing) algorithm. First the following is defined:

• “joints”—the number of joints in the body

• “comps”—the number of components in the body

• “verts(c)”—the number of vertices in a component for a component with ID c

• “v(vx)”—the three-dimensional location of vertex vx

• “p(j)”—the three-dimensional location of joint j

• “f(u�⃗ , θ)”—a function that returns the rotation matrix defined by u�⃗ and θ; see equation 4.

• “T(a)”—a function that returns the global translation vector for joint with ID a

• “𝐴(𝑎)”—a function that returns the rotation matrix for joint with ID a

• “*”—matrix multiplication

• 𝐶𝑗𝑜𝑖𝑛𝑡(𝑐) and 𝐽𝑡𝑟𝑒𝑒(𝑖, 𝑗) as previously defined

 18

The algorithm Pose is defined for the selection of a joint (j), an axis of rotation (u�⃗), and an angle
of rotation (θ) as (line numbers are provided in brackets and “//” indicates commented lines):

[1] Pose(j, u�⃗ , θ){
[2] R = f(u�⃗ , θ) // Rotation matrix calculated
[3] for (a = 1:joints){
[4] if (Jtree(j,a) == 1){
[5] // Translate affected joint
[6] t = R*(p(a) – p(j)) + p(j) – p(a)
[7] p(a) → p(a) + t
[8] // Add t to T
[9] T(a) → T(a) + t
[10] // Rotate coordinate system of affected joint
[11] A(a) → R*A(a)
[12] // Check if a subcomponent is attached to the joint
[13] // If so, rotate the subcomponent
[14] for (c = 1:comps){
[15] if (Cjoint(c)== a){
[16] for (vx = 1:verts(c){

 [17] t = R(v(vx) – p(j)) + p(j) – v(vx)
 [18] v(vx) → v(vx) + t
 [19] }
 [20] }

[21] }
[22] }
[23] }
[24] }

The algorithm first calculates the rotation matrix using the axis and angle of rotation. For each
joint in the body (line 3), if the joint is a child of joint j (line 4), then the child joint is relocated
(line 7). The child joint’s rotation matrix and global translation vector are also updated (lines 9
and 11). Finally, whatever component affected (line 15), all of its vertices need to be translated
(line 18).

Note that vertices are changed for visualization purposes only. The Vertex Matrix file is never
changed only its representation within the physical memory of the program.

5.3.2 Transforming a Body Into a Posture

A posture is defined as a terminating sequence of poses. However, now a more formal definition
can be presented. Notice that the posing algorithm updates the global translation vector and
coordinate system for certain joints (lines 9 and 11 of the Pose algorithm). Therefore, a
terminating sequence of poses will produce final values for the global translation vector and
rotation matrix for each joint. Thus, a posture is defined as a set of Translation (T) and Rotation
(A) matrices.

 𝑃 = {𝜯, 𝑨} (12)

 19

This set represents a relatively small set of data needed to posture an object compared to
recording a translation vector for each vertex. This is exactly how the posture is defined in the
FragFly model.

Similar to the Pose algorithm, a Posture algorithm will be presented. The purpose of this
algorithm is to translate the vertices of a body to match the predetermined posture found in the
posture files. There is no way to load a posture into the GUI. However, this would be a very
simple update to the GUI. The Posture algorithm will only modify the locations of the vertices in
the subcomponents. Assuming one has access to the posture P as defined in section 5.3.1. Refer
to the Pose pseudo-code for function definitions.

[1] Posture(T,A){
[2] for (s = 1:subcomponents){
[3] j = Cjoint(s)
[4] R = A(j)
[5] p = v(j)
[6] for (vx = 1:verts(s){
[7] t = R*(vert(vx) – p) + p + T(j)
[8] vert(vx) → vert(vx) + t
[9] }
[10] }
[11] }
[12] }

5.3.3 Reverse Posture Algorithm

Assume that one wanted to reverse the process of transforming a body into a posture. In the
Posture algorithm, only the vertices of the appropriate component were translated. The reverse
posture algorithm will add a layer of abstraction by returning a translation vector based on the
inputs. The algorithm is defined this way so that the FragFly model can have a method to map
the locations of the entry and exit points to a component to the ORCA reference frame.

The reverse posture algorithm, call it “Unposture,” has three input arguments:

1. v —three-dimensional point

2. c —a subcomponent ID that p is associated with

3. P —the posture set

The Unposture algorithm returns one value t, which is a translation vector. This represents the
translation of the point v to move it to the original orientation of the body part with ID c.

 20

The following functions and variables will be used in the pseudo-code:

• “P(T,j)”—a function that returns the global translation vector for the joint with ID j

• “P(A,j)”—a function that returns the coordinate system for the joint with ID j

• “(A)T ”—a unary operator that transposes the matrix A

• “joint(j)”—a function that provides the location of the joint with ID j

The algorithm Unposture thus defined as:

[1] t = Unpose(v, c, P){
[2] j = JS(s)
[3] t = (P(A,j))T*(v – (joint(j) + P(T,j))) + joint(j) - v
[4] return t

The justification of this algorithm is left to the reader.

6. Conclusions

The FragFly model requires that users provide a number of input files associated with the human
target. These files are part of a multibody system that was created that allows a body constructed
of moveable parts to be manipulated. A GUI was created that simplifies the task of manipulating
the body and provides real-time feedback. The details of the operations within the GUI were
discussed, as well as the role the output files for the GUI play in the FragFly model.

The following are suggestions for future development:

1. Cosmetic changes to the GUI to promote ease of use.

2. Allow users to load postures into the GUI from posture files.

3. Include an “undo” button to take back the last set of changes for a body part.

 21

Appendix A. “pose_body.m”

 This appendix appears in its original form, without editorial change.

 22

function pose_body(v_file, f_file, joints_file, j2j_file, j2c_file)
 % Load data
 v = dlmread(v_file,',');
 f = dlmread(f_file,',');
 p2p = dlmread(j2j_file,',');
 p2c = dlmread(j2c_file,',');
 leafj = p2c(end,:);
 p2c(end,:) = [];
 joints = dlmread(joints_file,',');
 org_j = joints;
 jR = repmat([1 0 0 0 1 0 0 0 1],size(p2p,1),1);
 axor = repmat([1 0 0 0 1 0 0 0 1],size(p2p,1),1);
 thetas = zeros(14,3);
 cameratoolbar;
 %hax = axes('Parent',hfig);
 j = 1; ax = 1; theta = 0;
 %%%%%%%%%%%%%%%%%% Slider
 angle_text = uicontrol('Style','text',...
 'String','Angle: 0', 'Position',[20 60 100 20]);
 slider = uicontrol('Style', 'slider',...
 'Min',-180,'Max',180,'Value',0,...
 'Position', [20 40 300 20],'SliderStep',[1/360 10/360],...
 'Callback', {@slider_callback,angle_text});
 uicontrol('Style','text','String',['-150 -100 -50 0',...
 ' 50 100 150 '], 'Position',[20 0 300 20]);
 uicontrol('Style','text','String',[' | | ',...
 ' | | | | | '],...
 'Position',[20 20 300 20]);
 set(slider,'UserData',{joints,axor,jR,leafj,p2p,j,ax,org_j,v,f,...
 theta,p2c,thetas});
 graph_stuff(slider);
 legend({'Target','Joints','Selected Joint','Pitch','Roll','Yaw'},...
 'Location','NorthOutside')
 daspect([1 1 1]);
 %%%%%%%%%%%%%%%%%% Joint list
 j_text = uicontrol('Style','text',...
 'String','Joint:', 'Position',[20 160 40 20]);
 jlist = uicontrol('Style', 'popup',...
 'String', '1|2|3|4|5|6|7|8|9|10|11|12|13|14',...
 'Position', [20 110 40 50],...
 'Callback', {@jlist_callback, slider});
 %%%%%%%%%%%%%%%%%% Axor
 ax_text = uicontrol('Style','text',...
 'String','AXOR:', 'Position',[20 110 40 20]);
 axlist = uicontrol('Style', 'popup',...
 'String', 'Pitch|Roll|Yaw',...
 'Position', [20 60 80 50],...
 'Callback', {@ax_callback,slider});
 %%%%%%%%%%%%%%%%%% Commit Button
 comm_pb = uicontrol('Style','pushbutton',...
 'Position',[120 110 100 40], 'String', 'Commit','Callback',...
 {@commit_callback,slider});
 axis([-1 1 -1 1 0 2.2])
 set(gca,'view',[158.0000 13]);
end
%%%%%%%%%%%%%%%%%%% SUBROUTINES %%
 function slider_callback(hObj, eventdata, anglhand)
 ud = get(hObj,'UserData');
 joints = cell2mat(ud(1));
 axor = cell2mat(ud(2));
 jR = cell2mat(ud(3));
 leafj = cell2mat(ud(4));
 p2p= cell2mat(ud(5));
 j = cell2mat(ud(6));
 ax = cell2mat(ud(7));
 org_j = cell2mat(ud(8));
 v= cell2mat(ud(9));
 f = cell2mat(ud(10));
 thetas = cell2mat(ud(13));

 23

 % set(hObj,'Value',thetas(j));
 angle = round(get(hObj,'Value'))-thetas(j,ax);
 thetas(j,ax) = round(get(hObj,'Value'));
 p2c = cell2mat(ud(12));
 theta = thetas(j,ax);
 [joints, axor, jR, R]=TRT(j,ax,angle,joints,axor,p2p,jR);
 trans = joints;
 % Apply each translation and rotation to each component
 for vr = 1:size(v,1)
 if (p2c(j,v(vr,4)) == 1)
 v(vr,1:3) = (R*(v(vr,1:3) - trans(j,:))' + trans(j,:)')';
 end
 end
 set(hObj,'UserData',{joints,axor,jR,leafj,p2p,j,ax,org_j,v,f,0,...
 p2c,thetas});
 set(anglhand,'String',['Angle: ',...
 num2str(round(get(hObj,'Value')))]);
 graph_stuff(hObj);
 end
 function jlist_callback(hObj, eventdata, shand)
 j= get(hObj,'Value');
 ud = get(shand,'UserData');
 ud(6) = num2cell(j); thetas = cell2mat(ud(13));ax = ud{7};
 cla; hold on;
 joints = cell2mat(ud(1));v=cell2mat(ud(9)); f = cell2mat(ud(10));
 set(shand, 'UserData', ud);
 set(shand, 'Value',thetas(j,ax));
 graph_stuff(shand);
 end
 function ax_callback(hObj, eventdata, shand)
 x= get(hObj,'Value');
 ud = get(shand,'UserData');
 ud(7)=num2cell(x); j=ud{6};
 set(shand, 'UserData', ud);
 thetas = cell2mat(ud(13));
 set(shand, 'Value',thetas(j,x));
 graph_stuff(shand);
 end
 function commit_callback(hObj,eventdata,shand)
 ud = get(shand,'UserData');
 jR = cell2mat(ud(3));
 % C++ conversion
 for j = 1:size(jR,1)
 jR(j,:) = reshape(reshape(jR(j,:),3,3)',1,9);
 end
 trans = cell2mat(ud(1))-cell2mat(ud(8));
 v = cell2mat(ud(9));
 trans(:,3) = trans(:,3) - min(v(:,3));
 rot_file = uiputfile('rotations.txt','Save Rotation Matrices');
 if (rot_file ~= 0)
 dlmwrite(rot_file,jR,'delimiter',',','newline','pc');
 end
 trans_file = uiputfile('translations.txt','Save Translation Matrix');
 if (trans_file ~= 0)
 dlmwrite(trans_file,trans,'delimiter',',','newline','pc');
 end
 try
 % Using the rotate_human tool
 sv = dlmread('verts.txt',',');
 sf = dlmread('faces.txt',',');
 jR = dlmread(rot_file,',');
 trans = dlmread(trans_file,',');
 joints = dlmread('joints.txt',',');
 leafj = [1,13,14,2,3,5,4,6,8,10,7,9,12,11,13,1];
 for svr = 1:size(sv,1)
 lfc = leafj(sv(svr,4));
 R = reshape(jR(lfc,:),3,3)';
 sv(svr,1:3) = ...
 (R*(sv(svr,1:3)-joints(lfc,:))'+joints(lfc,:)')'+trans(lfc,:);
 end
 cla; hold on;

 24

 patch('vertices',sv(:,1:3),'faces',sf(:,1:3)+1,'facealpha',1,...
 'edgealpha',0.005,'facecolor','g','facelighting','phong');
 daspect([1 1 1])
 catch
 errordlg('Could not find files or you cancelled while creating files.');
 end
 end
 function graph_stuff(slider)
 cla; hold on;
 ud = get(slider,'UserData');
 % Graph patches
 v=cell2mat(ud(9)); f=cell2mat(ud(10));
 patch('vertices',v(:,1:3),'faces',f(:,1:3)+1,'facealpha',.05,...
 'edgealpha',0.05,'facecolor','g','facelighting','phong');

 % Graph joints
 joints = cell2mat(ud(1));
 scatter3(joints(:,1),joints(:,2),joints(:,3),'bo','filled');
 j = ud{6};
 scatter3(joints(j,1),joints(j,2),joints(j,3),'ro','filled');
 % Add text labels
 ofst = .04;
 for jj=1:size(joints,1)
 text(joints(jj,1)+ofst,joints(jj,2)+ofst,joints(jj,3)+ofst,...
 num2str(jj),'FontSize',10);
 end
 jR = cell2mat(ud(3));
 scl = .4;
 %if (ud{7} ==1)
 plot3([joints(j,1) joints(j,1)+jR(j,1)*scl],...
 [joints(j,2) joints(j,2)+jR(j,2)*scl],...
 [joints(j,3) joints(j,3)+jR(j,3)*scl],'r-',...
 'Linewidth',1+2*(ud{7}==1));
 %elseif (ud{7} == 2)
 plot3([joints(j,1) joints(j,1)+jR(j,4)*scl],...
 [joints(j,2) joints(j,2)+jR(j,5)*scl],...
 [joints(j,3) joints(j,3)+jR(j,6)*scl],'b-',...
 'Linewidth',1+2*(ud{7}==2));
 %else
 plot3([joints(j,1) joints(j,1)+jR(j,7)*scl],...
 [joints(j,2) joints(j,2)+jR(j,8)*scl],...
 [joints(j,3) joints(j,3)+jR(j,9)*scl],'k-',...
 'Linewidth',1+2*(ud{7}==3));
 %end
 joints = find(ud{1,5}(ud{1,6},:));
 for j=1:size(joints,2)
 comps = find(ud{1,4}==joints(j));
 for c = 1:size(comps,2)
 patch('vertices',v(:,1:3),'faces',f(f(:,4)+1==comps(c),1:3)+1,'facealpha',.5,...
 'edgealpha',0.1,'facecolor','g','facelighting','phong');
 end
 end
 light
 daspect([1 1 1])
 end

 25

Appendix B. “TRT.m”

 This appendix appears in its original form, without editorial change.

 26

function [pivot, axor, jR, R] = TRT(k, x, rads, pivot, axor, p2p, jR)
% Find the rotation matrix R, and translate, rotate, and translate affected joints
R = zeros(3);
rads=rads*(pi/180);
c=cos(rads);d=1-c;s=sin(rads);
v0=axor(k,3*(x-1)+1);
v1=axor(k,3*(x-1)+2);
v2=axor(k,3*x);
 R(1)=v0*v0*d+ c ; R(4)=v0*v1*d-v2*s ; R(7)=v0*v2*d+v1*s ;
 R(2)=v1*v0*d+v2*s ; R(5)=v1*v1*d+ c ; R(8)=v1*v2*d-v0*s ;
 R(3)=v2*v0*d-v1*s ; R(6)=v2*v1*d+v0*s ; R(9)=v2*v2*d+ c ;
for p = 1:size(p2p,2)
 if (p2p(k,p) == 1)
 % Transform affected pivot points
 pivot(p,1:3) = (R*(pivot(p,1:3) - pivot(k,:))' + pivot(k,:)')';
 % Transform affected axes
 for jj = 1:3
 tax = R*(axor(p,(3*(jj-1)+1):3*jj))';
 axor(p,(3*(jj-1)+1):3*jj) = tax/norm(tax);
 end
 % The jR matrices are stored row-major. So we need to transpose
 % them in order to multiply it by R
 jR(p,:) = reshape((R*reshape(jR(p,:),3,3)),1,9);
 end
end

NO. OF
COPIES ORGANIZATION

 27

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 IMAL HRA

 1 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 1 RDRL WML A
 (PDF) B FLANDERS

 28

INTENTIONALLY LEFT BLANK.

	List of Figures
	List of Tables
	1. Background
	2. Introduction to the Multibody System
	3. Input Files
	3.1 Declarative Data
	3.2 Relational Data

	4. GUI User Guide
	4.1 START
	4.2 POSE
	4.3 COMMIT

	5. Fundamentals of Rotations, Posing, and Postures
	5.1 Rotate a Point About the Origin
	5.2 Rotate a Point About Another Point Given a Rotation Matrix
	5.3 Rotate a Joint’s Rotation Matrix
	5.3.1 Posing Algorithm
	5.3.2 Transforming a Body Into a Posture
	5.3.3 Reverse Posture Algorithm

	6. Conclusions
	Appendix A. “pose_body.m”5F(
	Appendix B. “TRT.m” 6F(

